OSA publishes a digest of Luminar CTO, Jason Eichenholz, talk at 2017 Frontiers in Optics meeting. Few quotes:
"Surprisingly, however, despite this safety imperative, Eichenholz pointed out that the lidar system used (for example) in Uber’s 2017 self-driving demo has essentially the same technical specifications as the system of the winning vehicle in DARPA’s 2007 autonomous-vehicle grand challenge. “In ten years,” he said, “you have not seen a dramatic improvement in lidar systems to enable fully autonomous driving. There’s been so much progress in computation, so much in machine vision … and yet the technology for the main set of eyes for these cars hasn’t evolved.”
On the requirements side, the array of demands is sobering. They include, of course, a bevy of specific requirements: a 200-m range, to give the vehicle passenger a minimum of seven seconds of reaction time in case of an emergency; laser eye safety; the ability to capture millions of points per second and maintain a 10-fps frame rate; and the ability to handle fog and other unclear conditions.
But Eichenholz also stressed that an autonomous vehicle on the road operates in a “target-rich” environment, with hundreds of other autonomous vehicles shooting out their own laser signals. That environment, he said, creates huge challenges of background noise and interference. And he noted some of the same issues with supply chain, cost control, and zero error tolerance.
Eichenholz outlined some of the approaches and technical steps that Luminar has adopted in its path to meet those many requirements in autonomous-vehicle lidar. One step, he said, was the choice of a 1550-nm, InGaAs laser, which allows both eye safety and a good photon budget. Another was the use of an InGaAs linear avalanche photodiode detector rather than single-photon counting, and scanning the laser signal for field coverage rather than using a detector array. The latter two decisions, he said, substantially reduce problems of background noise and interference. “This is a huge part of our architecture.”
Wired UK publishes a video interview with LiDAR CEO Austin Russell:
"Surprisingly, however, despite this safety imperative, Eichenholz pointed out that the lidar system used (for example) in Uber’s 2017 self-driving demo has essentially the same technical specifications as the system of the winning vehicle in DARPA’s 2007 autonomous-vehicle grand challenge. “In ten years,” he said, “you have not seen a dramatic improvement in lidar systems to enable fully autonomous driving. There’s been so much progress in computation, so much in machine vision … and yet the technology for the main set of eyes for these cars hasn’t evolved.”
On the requirements side, the array of demands is sobering. They include, of course, a bevy of specific requirements: a 200-m range, to give the vehicle passenger a minimum of seven seconds of reaction time in case of an emergency; laser eye safety; the ability to capture millions of points per second and maintain a 10-fps frame rate; and the ability to handle fog and other unclear conditions.
But Eichenholz also stressed that an autonomous vehicle on the road operates in a “target-rich” environment, with hundreds of other autonomous vehicles shooting out their own laser signals. That environment, he said, creates huge challenges of background noise and interference. And he noted some of the same issues with supply chain, cost control, and zero error tolerance.
Eichenholz outlined some of the approaches and technical steps that Luminar has adopted in its path to meet those many requirements in autonomous-vehicle lidar. One step, he said, was the choice of a 1550-nm, InGaAs laser, which allows both eye safety and a good photon budget. Another was the use of an InGaAs linear avalanche photodiode detector rather than single-photon counting, and scanning the laser signal for field coverage rather than using a detector array. The latter two decisions, he said, substantially reduce problems of background noise and interference. “This is a huge part of our architecture.”
Wired UK publishes a video interview with LiDAR CEO Austin Russell:
Luminar on Automotive LiDAR Progress
Reviewed by MCH
on
September 19, 2017
Rating:
No comments: